
2.0 Simple Mechanism 

 As earlier mentioned a machine is a device which receives energy and transforms it into 

some useful work. A machine consists of a number of parts or bodies. We shall study here the 

Mechanisms of various parts or bodies from which the machine is assembled. 

Kinematic Link or Element 

 Each part of a machine, which moves relative to some other parts, is known as a 

Kinematic link (or simply link) or element. A link may consist of several parts, which are rigidly 

fastened together, so that they do not move relative to one another. A link should have the 

following characteristics. 

1. It should have relative motion and  

2. It must be a resistant body. (A body is said to be a resistance if it is capable of 

transmitting the required forces with negligible deformation). 

Types of Links  

1. Rigid link: A rigid link is one which does not undergo any deformation while 

transmitting motion. Strictly speaking, rigid links don not exists. However as the 

deformation of a connecting rod, crank etc. of a reciprocating steam engine is not 

appreciable, they can be considered as rigid links. 

2. Flexible Link: A flexible link is one which is partly deformed in a manner not to affect 

the transmission of motion. For example, belts, ropes, chains and wires are flexible links 

and transmit tensile forces only. 

3. Fluid Link: The link which is formed by having a fluid in a receptacle and the motion is 

transmitted through the fluid by pressure or compression only, as in the case of hydraulic 

presses, jacks and brakes. 

Kinematic Pair 

 Two links which are connected together is such as way that their relative motion is 

completely or successfully constrained forms a kinematic pair. 

Types of Constrained Motions 

The following are the three types of constrained motions: 

1. Completely constrained motion: When the motion between a pair is limited to a definite 

direction irrespective of the direction of force applied then the motion is said to be a completely 

constrained motion. 



 

Fig.2.1 Square bar in a square hole         Fig.2.2. Shaft with collar in a circular hole      

For example, the piston and cylinder (in a steam engine) form a pair and the motion of the piston 

is limited to a definite direction (i.e. it will only reciprocate) relative to the cylinder irrespective 

of the direction of motion of the crank. 

 The motion of a square bar in a square hole as in fig. 2.1 and motion of a shaft with 

collars at each end in a circular hole, as in fig. 2.2 are examples of completely constrained 

motion. 

2. Incompletely constrained motion: when the motion between a pair can take place in 

more than one direction, then the motion is called an incompletely constrained motion. 

The change in the direction of impressed force may alter the direction of relative motion 

between the pair. A circular bar or shaft in a circular hole as shown in fig. 2.3, is an 

example of an incompletely constrained motion as it may either rotate or slide in a hole. 

 

 

3. Successfully constrained motion: When the motion between the elements, forming a 

pair, is such that the constrained motion is not completed by itself, but by some other 

meant, then the motion is said to be successfully constrained motion. Consider a shaft in 

a foot-step bearing in fig. 2.4, the shaft may rotate in a bearing or may move upwards (in 

completely constrained motion),  but if the load is placed on the shaft to prevent axial 

upward movement of the shaft, then the motion of the pair is said to be successfully 

constrained motion. 



Kinematic Chain 

 When the Kinematic pairs are coupled in such a way that the last link is joined to the first 

link to transmit definite motion (i.e completely or successfully constrained motion), it is called a 

Kinematic chain. This is to say that  a Kinematic chain may be defined as a combination of 

kinematic pairs, joined in such a way that each link forms a  part of two parts and the relative 

motion between the links or elements is completely or successful constrained. For example, the 

crankshaft of an engine forms a Kinematic pair with the bearings which a fixed in a pair, the 

connecting rod with the crank forms a second kinematic pair, the piston with connecting rod 

forms a third and the piston with the cylinder forms a fourth pair. The combination of these links 

is a Kinematic chain. 

Types of Kinematic chains 

 The most important kinematic chains are those which consist of four lower pairs, each 

pair being a sliding pair or a turning pair. The following are the three types of Kinematic chains 

with  four lower pairs. 

1. Four bar chain or quadric cycle chain 

2. Single slider crank chain, and  

3. Double slider crank chain. 

Mechanism  

 When one of the links of a kinematic chain is fixed, the chain is known as Mechanism, 

while the mechanism with more than four links is known as compound mechanism. When a 

mechanism is required to transmit power or to do some particular type of work, it becomes a 

machine. 

Number of Degree of Freedom for Plane Mechanism  

 In the Design or analysis of a mechanism, one of the most important concern is the 

number of degree of freedom (also called movability) of the mechanism. It is defined as the 

number of input parameters (usually pair variables) which must be independently controlled is 

order to bring the mechanism into a useful engineering purpose. 

Application of Kutzbach Criterion to Plane Mechanisms 

 Kutzbach criterion for determining the number of degrees of freedom or movability (n) of 

a plane mechanism is  

  n = 3 (l – 1) – 2j – h. 



  

 

Note: 

a. When n = 0, then the mechanism forms a structure and not relative motion between the 

links is possible. 

b. When n = 1, then the mechanism can be driven by a single input motion. 

c. When n = 2, then two separate input motions are necessary to produce constrained 

motion for the mechanism. 

d. When n = -1 or less, then there are redundant constraints in the chain and it forms a 

statically indeterminate structure. 

Velocity in Mechanisms 

 There are two important methods of determining the velocity of any point on a link in a 

mechanism out of many. 

1. Instantaneous centre method 

2. Relative velocity method. 

- Velocity of a point on a link by Instantaneous centre method: The instantaneous 

centre method of analyzing the motion in a mechanism is based upon the concept that any 

displacement of a body (or rigid link) having motion in one plane, can be considered as a 

pure rotational motion of a rigid link as a whole about some centre, known as 

instantaneous centre or virtual centre of rotation. 

 

- Number of Instantaneous centre in a mechanism  

The number of instantaneous centres in a constrained kinematic chain is equal to the 

number of possible combinations of two links. 

The number of pairs of links or the number of instantaneous centres is the number of 

combinations of n links taken two at a time. 

Mathematically, number of instantaneous centres 
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- Types of Instantaneous centres 

The instantaneous centres for a mechanism are of the following types  

1. Fixed instantaneous centres, 

2. Permanent instantaneous centres 

3. Neither fixed nor permanent instantaneous centres. 

The first two types i.e. fixed and permanent instantaneous centres, are together known as 

primary instantaneous centres and the third type is known as secondary instantaneous centres. 

 

Fig. 2.5: Types of instantaneous centre  

Consider a four bar mechanism ABCD as shown is fig. 2.5. the instantaneous centres (N) 

in a four bar mechanism is given by 
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 The instantaneous centres I12 and I14 are called the fixed instantaneous centres as they 

remain in the same place for all configuration of the mechanism. The instantaneous centres I23 

and I34 are the permanent instantaneous centres as they move when the mechanism moves, but 

the joints are of permanent nature. The instantaneous centres I13 and I24 are neither fixed nor 

permanent instantaneous centres as they vary with the configuration of the mechanism. 

Method of locating Instantaneous Centres in a Mechanism 

 Consider a pin jointed four bar mechanism as shown which in fig. 2.6 (a). The following 

procedure is adopted for locating  instantaneous centres. 

1. First, Determine the number of instantaneous (N) by using the relation. 
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 The instantaneous centres I12 and I14 are called the fixed instantaneous centres as they 

remain in the same place for all configuration of the mechanism. The instantaneous centres I23 

and I34 are the permanent Instantaneous centres as they move when the mechanism moves, but 

the joints are of permanent nature. The instantaneous centres I13 and I14 are neither fixed nor 

permanent instantaneous centres as they vary with the configuration of the mechanism. 

Method of Locating Instantaneous Centres in a Mechanism 

 Consider a pin jointed four bar mechanism as shown in fig.2.6 (a). The following 

procedure is adopted for locating instantaneous centres. 

1. First, Determine the number of instantaneous centre (N) by using the relation N =

 
2

1nn
, linksofNumbernwhere   

In this case, N = 6   

2. Make a list of all the Instantaneous centres in a mechanisms, since for a four bar 

mechanism, there are six instantaneous centres, therefore these centres are listed as 

shown in the table below (known as book – keeping table). 

3. Locate the fixed and permanent instantaneous centres by inspection I12 and I14 are fixed 

instantaneous centres and I23 and I34 are permanent instantaneous centres. 

Links  1 2 3 4 

Instantaneous centres (6 in 

number) 

12 

13 

14 

23 

24 

34 - 

 

(a) Four bar Mechanism    (b) Circle diagram  



4. Locate the remaining neither fixed nor permanent instantaneous centres (or secondary 

centres) by Kennedy’s theorem. This is done by circle Diagram as shown in fig. 2.6(b), 

mark points on  a circle equal to the number of links in a mechanism. In this case, mark 1, 

2, 3 and 4 on the circle. 

5. Join the points by solid lines to show that these centres are already found. In the circle 

Diagram these lines are 12, 23, 34 and 14 to indicate the centres I12, I23, I34 and I14. 

6. In order to find the other two instantaneous, join two such points that the line joining 

them form two adjacent triangles in the circle diagram. i.e. In the case of fig.2.6(b), join 1 

and 3 to form the triangle 123 and 341 and the Instantaneous centre I13 which lie on the 

intersection of I12 I23 and I14 and I34, produced if necessary on the mechanisms. Thus the 

instantaneous centre I13 is located. Join 1 and 3 by a dotted line on the circle diagram and 

mark number 5 on it. Similarly the instantaneous centre I24 will lie on the intersection of 

I12 I14 and I23 I24, produced if necessary, on the mechanism. This I24 is located. Join 2 and 

4 by a dotted line on the circle diagram and mark 6 on it. 

Example 1 

 In a pin jointed four bar mechanism, as shown in the fig. below AB 300mm, Bc = CD = 

360mm, and AD =600mm. The angle BAD = 60. The crank AB rotates uniformly at 100 

r.p.m. Locate all the instantaneous centres and find the angular velocity of the link BC.  

            

 

 

Solution  

NAB = 100 r.p.m. 

ωAB = srad
x

/47.10
60
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 Since crank length AB= 300mm = 0.3m, therefore velocity of point B on link AB. 
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Location of Instantaneous centre 

Follow the method of locating instantaneous centre as previously discussed.. 

i.e N = 6. ………………………….. (n = 4) 

 

Angular velocity of the link BC 

ωBC = 
5.0

141.3
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 = 6. 282 rad/s. 

Example 2 

 Locate all the instantaneous centres of the slider crank mechanism as shown below. The 

lengths of crank OB and connecting rod AB are 100mm and 400mm respectively, if the 

crank rotates clockwise with an angular velocity of 10 rad/s, find. 

(a) Velocity of the slider A and  

(b) Angular velocity of the connecting rod AB. 

 

Solution  

Given: ωoB = 10rad/s, OB = 100mm = 0.1m 

Linear velocity of the crank OB 

 VoB = VB = ωoB x OB 

   = 10 x 0.1 = 1m/s. 

Location of instantaneous centres. 



Since there are four links (n = 4), therefore the number of instantaneous centres  
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2. For a four link mechanism, the book keeping table may be drawn as previously discussed. 

3. Locate the fixed and permanent instantaneous centre by inspection. These centres are I12, I23 

and I34 as shown below, since the slider (link 4) moves on a straight surface (link 1), therefore 

the instantaneous centre I14 will lie at infinity. 

4. Locate the other two remaining neither fixed nor permanent instantaneous centres, by 

Kennedy’s theorem. This is done by circle diagram. 

  



5. Continue as previously discussed. 

 

By measurement, we find that  

  I13A = 460mm = 0.46m, and I13B = 560mm = 0.56m.  

1. Velocity of the slider A 

 Let VA = velocity of the slider A 

We know that 
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2. Angular velocity of the connecting rod AB 

let ωAB = Angular velocity of the connecting and AB. 

From, 
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Example 3 

 A mechanism as shown below has the following dimensions: OA = 200mm, AB = 1.5, 

BC =600mm; CD = 500mm and BE = 400mm. 

Locate the instantaneous centres. If the crank OA rotates Uniformly at 120 r.p.m clockwise, find 

a. The velocity of B, C and D 

b. The angular velocity of the link, AB, BC, and CD. 

 

Solution 

 NoA = 120 r.p.m or ω0A = ./57.12
60
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Since the length of crank OA = 200mm = 0.2m, therefore linear velocity of crank OA 

 VoA =VA =ωoA x OA =  12.57x 0.2 

    2.514 m/s. 

Location of instantaneous centres 

1. Since n = 6, N = 15 

2. Make a list of the instantaneous centres in a mechanism. Since the mechanism has 15 

instantaneous centres, therefore these centres are listed in the book keeping table. 



 

 

Links 1 2 3 4 5 6 

Instantaneous  

Centre  

15 in numbers  

12 

13 

14 

15 

16 

23 

24 

25 

26 

34 

35 

36 

45 

46 

56  

3. Locate the fixed and permanent instantaneous centre by inspection. These centres are I12, 

I23, I34, I45, I16 and I14 as shown above  

4. Locate the remaining neither fixed nor permanent instantaneous centres by Kennedy’s 

theorem. Draw a circle and mark points equal to the number of links such as 1,2,3,4,5 and 

6 as 14 to indicate the centre  I12, I23, I34, I45, I56 and I14 respectively (see fig. below)  

 

5. Joint point 2 to 4 by a dotted line to form the triangles 124 and 234. The side 2 4, 

common to both triangles, is responsible for completing the two triangles. Therefore the 



instantaneous centre I24 lies on the intersection of I12 I14 and I23 I34 produced if necessary. 

Thus centre I24 is located. Mark number 8 on the dotted line 24 (because seven centres 

have already been located)  

6. Now join point 1 to 5 by a dotted line to form the triangle 1 4 5 and 1 5 6. The side 1 5, 

common to both triangle, is responsible for completing the two triangles. Therefore the 

instantaneous centres I15 lies on the intersection of I15 is located. Mark number 9 on the 

dotted line 15.  

7. Join point 1 to 3, …… for No 10  

8. Join point 4 to 6 …… for No 11 

9. Join point 2 to 6 ……for No 12  

10. Similarly, the 13th, 14th  and 15th  instantaneous centres (i.e. I35, I25 and I36) may be 

located by joining the point 3 to 5, 2 to 5 and 3 to 6 respectively.  

By measurement, we find that  

I13 A = 840mm = 0.84m, I13B = 107mm = 1.07m; I14B = 400mm = 0.4m  

I14C = 200mm = 0.2m; I15 C = 740mm = 0.74m; I15D = 500mm = 0.5.  

a) Velocity of Points B, C, and D  

Let VB, VC and VD = velocity of the point B, C and D respectively  
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Again  
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Similarly,  
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2. Angular velocity of the link AB, BC and CD  

Let CDACAB and , = Angular velocity of the links AB, BC, and CD reporting  
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Velocity in mechanism (relative velocity method) 

Motion of a Link 

 Consider two point A and B or a rigid link AB as shown in fig. 2.7(a), let one of the 

extremities (B) of the link move relative to A, in a clockwise direction. Since the distance from 

A to B remains the same, therefore there can be no relative motion between  A and B, along the 

line AB. It is this obvious, that the relative motion of B with respect to A must be perpendicular 

to AB. 

 

(a)    (b)  

Hence, velocity of any point on a link with respect to another point on the same link is always 

perpendicular to the line joining these points on the configuration (or space) Diagram. 

 The relative velocity of B with respect to A (i.e. VBA) is represented by the vector ab and 

is perpendicular to the line AB as shown in fig. 2.7(b) 

 



Let ω = Angular velocity of the link AB about A. 

We know that the velocity of any point B with respect to A. 

VBA = )(............................ iABab   

Similarly, the velocity of any point C on AB with respect to A 

VCA = )(........................... iiACac   

From equation (i) and (ii). 
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Velocity of a point on a link by relative velocity method  

 Consider two points A and B on a link as shown in fig 2.8(a). Let the absolute velocity of 

the point A ie. VA is known in magnitude and direction and the absolute velocity of the point B 

ie. VB is known in direction only. Then the velocity of B may be determined by drawing the 

velocity diagram as shown in fig. 2.8(b). 

 

(a) Motion of points on a link                     (b) Velocity Diagram 

 

The velocity diagram is drawn as follows: 

1. Take some convenient point O, known as pole 

2. Through O, draw Oa parallel and equal  to VA, to some suitable scale 

3. Through a, draw a line perpendicular to AB of fig. 2.8(a). this line will represent the 

velocity B with respect to A, i.e, VBA. 

4. Through O, draw a line parallel to VB intersecting the line of VBA at b. 

5. Measure ob, which gives the required velocity of point B (VB), to the scale. 

 

 

Note: 



1. The vector ab which represents the velocity of B with respect to A (VBA) is known as 

velocity of image of the link AB. 

2. The absolute velocity of any point C on AB may be determined by dividing vector ab at c 

in the same ratio as C divides AB. In other words 

AB

AC

ab

ac
  

3. The absolute velocity of any other point D outside AB as shown in fig. 2.8(a), may also 

be obtained by completing the velocity triangle abd and similar to triangle ABD, as 

shown in fig. 2.8(b). 

4. The angular velocity of the link AB may be found by dividing relative velocity of B with 

respect to A (i.e. BA) by the length of link AB. Mathematically, angular velocity of the 

link AB. 

ωAB = 
AB

ab

AB

VBA   

Velocities in slider crank mechanism 

 A slider crank mechanism is shown in fig. 2.9(a). The slider is attached to the connecting 

rod AB. Let the radius of crank OB be r and let it rotates in a clockwise direction, about the point 

O with uniform angular velocity W rad/s. therefore the velocity of B i.e VB is known in 

magnitude and direction. The slider reciprocates along the line of stroke A0. 

 

(a) Slider Crank Mechanism                     (b) Velocity Diagram 

 

 

 

Rubbing velocity at a pin joint  



The links in a mechanism are mostly connected by means of pin joints. The rubbing 

velocity is defined as the algebraic sum between the angular velocities of the two links which are 

connected by pin joints, multiplied by the radius of the pin. 

 Consider two links OA and 0B connected by means of pin joints O as shown in fig. 2.10 

 

 

According to the definition, 

 Rubbing velocity at the pin joint o 

 = (�� � ��
)r, if the links move in the same direction 

 = (�� � ��
)r, if the links move in the opposite direction. 

Note: 

 When the pin connects one sliding member and other turning member; the angular 

velocity of the sliding member is zero. In such cases  

  Rubbing velocity at the pin joint = �.r 

Example 1 

 In a four bar chain ABCD, AD is fixed and is 150mm long. The crank AB is 40mm long 

and rotates at 120 r.p.m clockwise, while the link CD = 80mm Oscillates about D. Bc and AD 

are of equal length. Find the angular velocity of CD when angle BAD=600.
 

Solution 

 NBA = 120 r.p.m, ωBA = srad
X
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The length of crank AB = 40mm = 0.04m, therefore velocity B with respect to A or velocity of B 

(since A is a fixed point). 

 VBA= VB = ωBA x AB = 12.568 x 0.04 

    = 0.503mls  



 

 

First of all, draw the space diagram to some suitable scale, as shown in fig. 2.11(a) above and the 

velocity diagram, as shown in fig 2.11(b) as discussed below. 

1. Since the link AD is fixed, therefore point a and d are taken as one point in the velocity 

diagram. Draw vector ab perpendicular to BA, to some suitable scale, to represent the 

velocity B with respect to A or simply velocity of B (ie. VBA or VB) such that  

Vector ab = VBA = VB = 0.503 mls 

2. Now from point b, draw vector bc perpendicular to CB to represent the velocity of  C 

with respect to B (ie. VCB) and from point d, draw vector dc perpendicular to CD to 

represent the velocity of C with respect to D or simply velocity of C (i.e. VCD or VC). The 

vector bc and dc intersect at C. 

By measurement, we find that  

    VCD = VC = vector dc = 0.385mls 

We know that, CD = 80mm = 0.08m 

-: Angular velocity of link CD, 

  WCD = 
08.0

385.0


DC

VCD   

   = 4.8 rad/s. (clockwise about D) 

 

Example 2: The crank and connecting rod of a theoretical steam engine are 0.5m and 2m long 

respectively, the crank makes 180r.p.m in the clockwise direction. When it has turned 450 from 

the inner dead centre position, determine: 

a.  Velocity of piston 

b. Angular velocity of connecting rod. 



c. Velocity of point E on the connecting rod 1.5m from the gudgeon pin 

d. Velocity of rubbing at the pins of the crank shaft, crank and crosshead when the 

diameters of their pins are 50mm, 60mm and 30mm respectively. 

e. Position and linear velocity of any point G on the connecting rod which has the least 

velocity relative to crank shaft. 

Solution 

Given: NB0 = 180 r.p.m or WB0 = srad /852.18
60
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Since the crank length 0B = 0.5m therefore linear velocity of B with respect to 0 or velocity of B 

(because o is a fixed point). 

   VB0 = VB =  B0 x 0B 

     18.852 x 0.5 

     9.426mls 

a. Velocity of piston 
 First of all, draw the space diagram, to some suitable scale. Also the velocity diagram as 

discussed below. 

i. Draw vector ob perpendicular to B0, to some suitable scale, to represent the velocity of B with 

respect to 0 or velocity of B such that  

 

  Vector 0b = VB0 = VB = 9.426 mls. 

ii. From point b, draw vector bp perpendicular to Bp to represent velocity of p with respect to B 

(ie. VPB) and from point 0, draw vector op parallel to op parallel to po to represent velocity of p 

with respect to O (ie. Vpo or simply Vp). The vector bp and op intersect at point p. 

 By measurement, the position of piston P, 
  Vp = vector op = 8.15mls 

 

 

 

 

                                    Velocity diagram  
Space diagram  
 

b. Angular Velocity of connecting  rod 
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 From the velocity diagram, the velocity of P with respect to B, 

    VPB = Vector bp = 6.8mls 

 Since the length of connecting rod PB is 2m, therefore angular velocity of the connecting 

rod 

    ωPB = srad
PB

VB /4.3
2

8.6
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c. Velocity of point E on the connecting rod 

 By measurement, velocity of point E. 

  VE = vector oe = 8.5 mls 

   Or 
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d. Velocity of rubbing 

 Diameter of crank shaft pin 0, 

  do = 50mm = 0.05m 

 Diameter of crank – pin at B, 

   dp = 60mm = 0.06m 

 And diameter of cross – head pin, 

   dc = 30mm = 0.03m 

 Velocity of rubbing at the pin of crank shaft 

   = 85.18
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           = 0.47mls 

 Velocity of rubbing at the pin of crank 
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 ……………… (ωBO is clockwise and ωPB is anticlockwise) 

 Velocity of rubbing at the cross-head 
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e. The position of point G on the connecting rod which has the least velocity relative to crank 

shaft is determined by drawing perpendicular from o to vector bp. Since the length of og will be 

the least, therefore the point g represents the required position of G on the connecting rod. 

 By measurement, 

  Vector bg = 5 m/s 

The position of point G on the connecting rod is obtained as follows 
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Assignment  

1. The Crank OA of the engine Mechanism as shown below rotates at 3600rev/min 

anticlockwise. OA =100mm, and the connecting rod AB is 200mm long. Find (a) the 

piston velocity (b) the angular velocity of AB (c) the velocity of point C on the rod 50mm 

from  A. 

 

 

 

 

2. The figure below shows a four-bar mechanism OABQ with a link CD attached to C the 

mid-point of AB. The end D of link CD is constrained to move vertically. OA=1m, 

AB=1.6m, QB=1.2m, OQ=2.4m and CD=2m. For he position shown, the angular 

velocity of Crank OA is 60 rev/min clockwise; find (a) the velocity of D (b) the angular 

velocity of CD; (c) the  

  



 

 

 

 

 

 

Acceleration in Mechanism  

Acceleration Diagram for a link  

Consider two points A and B on a rigid link in the fig 2.13 below. Let the point B moves 

with respect to A, with an angular velocity of   rad/s and let   rad/s2 be the angular 

acceleration of the link AB. 

 

 

 

 

Fig. 2.13 (a) Link     (b) Acceleration diagram  

1. The centripetal or radial component of the acceleration of B with respect to A  

BAVABxABlinkoflengthxBAa BA /2221    

This radial component of acceleration acts perpendicular to the velocity VBA, In other 

words, it acts parallel to the link AB 

2. The tangential component of the acceleration of B with respect to A,  

AB

ABLinktheofLengthBAa







1

 



This tangential component of acceleration acts parallel to the velocity VBA. In other 

words it acts perpendicular to the link AB. 

Acceleration of a point on a Link  

 

 

 

 

 

 

            

 

Consider two points A and B on the rigid link, as shown in Fig. 2.14(a)  

Let the acceleration of the point A i.e. aA is known in magnitude and direction and the direction 

of path of B is given. The acceleration of the point B is determined in magnitude and direction 

by drawing the acceleration diagram as discussed below.  

1. From any point o1, draw vector o1a1 parallel to the direction of absolute acceleration at 

point A i.e., aA to some suitable scale, as shown in fig. 2.14(b) 

2. We know that the acceleration of B with respect to A i.e. aBA has the following two 

components;  

(i) Radial component of the acceleration of B with respect to A i.e. ar
BA and  

(ii) Tangential component of the acceleration B with respect to A i.e. at
BA. These two 

component are mutually perpendicular.  

3. Draw vector a1x parallel to the link AB (because radial component of the acceleration of 

B with respect to A will pass through AB), such that  

Vector 
AB

V
BAaxa

BA
2

11   

Where, VBA = Velocity of B with respect to A  

(a) Points on a link 

(b) Acceleration  Diagram 



Note: The value of VBA may be obtained by drawing the velocity diagram as previously 

discussed.  

4. From point x, draw vector xb1 perpendicular to AB or vector a1x because tangential 

component of B with respect to A i.e. atBA, is perpendicular to radial component ar
BA) 

and through o1 draw a line parallel to the path of B to represent the absolute acceleration 

of B i.e. aB. The vector xb1 and o1b1 intersect at b1. Now the values of aB may be 

measured, to the scale  

5. By joining the points a1 and b1 we may determine the total acceleration of B with respect 

to A i.e. aBA. The vector a1b1 is known as acceleration image of the link AB. 

6. For any other point C on the link draw triangle a1b1c1 similar to triangle ABC. Now 

vector b1c1 represent the acceleration of C with respect to A i.e. aCA. As mentioned 

earlier, aCB and aCA will each have two components as follows: 

(i) aCB has two components: ar
CB and at

CB as shown by triangle b1zc1, in which b1z is 

parallel to BC and ZC1 is perpendicular to b1Z or BC.  

(ii) aCA has two components: ar
CA and at

CA as shown by triangle a1yc1 in which a1y is 

parallel to AC and yc1 is perpendicular to a1y or AC.  

7. The angular acceleration of the link AB is obtained by dividing the tangential component 

of the acceleration of B with respect to  BA
taA  To the length of the link. Mathematically, 

angular acceleration of the link AB, 

 
AB

a BA
t

AB   

                           Acceleration in the slider Crank mechanism 

 A slider crank mechanism is shown in fig. 2.13 (a). Let the crank OB makes an angle θ 

with the  inner dead centre (I.D.C) and rotates in a clockwise direction about the fixed point O 

with uniform angular velocity ωBO, rad/s 

.: Velocity of B with respect to O or velocity of B (because O is a fixed point). 

           VBO = VB = WBO x OB, acting tangentially at B 



 We know that centripetal or radial acceleration of B with respect to O or acceleration of 

B (because O is a fixed point) 

 aBo = aB = ω2
 BO x OB = 

OB

V BO
2

 

 

(a) Slider crank mechanism                          (b) Acceleration Diagram 

Fig. 2.13 Acceleration in the slider crank mechanism. 

The acceleration diagram as shown above in fig 2.13(b) may be drawn as follows. 

1. Draw vector ob parallel to BO an set off equal in magnitude of aBO = aB to some suitable 

scale. 

2. From point b1
, draw vector b1x parallel to BA. The vector b1x represents the radial 

component of the acceleration of A with respect to B whose magnitude is given by: 

aAB = 
BA

VAB
2

 

since the point B moves with constant angular velocity, therefore there will be no   

tangential component of the acceleration. 

3. From point x, draw vector xa1 perpendicular to b1x (or AB). The vector xa1 represents the 

tangential component of the acceleration of A with respect to B ie. t
ABA  

4. Since the point A reciprocates along AO, therefore the acceleration must be parallel to 

AO, intersecting the vector xa1 at a1. Now the acceleration of the piston or the slider 

A(aA) and t
ABa  may be measured to the scale. 



5. The vector b1 a1 which is the sum of the vector b1 x1
 and x1a1, represents the total 

acceleration of A with respect to B i.e aAB. The vector b1a1 represents the acceleration of 

the connecting rod AB. 

6. The acceleration of any other point on AB such as E may be obtained by dividing the 

vector b1a1 at e1 in the same ratio as E divides AB. In other words 

 
AB

AE

ba

ea


11

11

 

7. The angular acceleration of the connecting rod AB may be obtained by dividing the 

tangential component of the acceleration of A with respect to B t
ABa to the length of AB. 

In other words, angular acceleration of AB, 

 AB = .Bofclockwise
AB

at
AB  

        Example 1.The crank of a slider mechanism rotates clockwise at a constant speed of 300 

r.p.m. the crank is 150mm and the connecting rod is 600mm long. Determine: 

(a) linear velocity and angular acceleration of the mid point of the connecting rod, 

(b) angular velocity and angular acceleration of the connecting rod, at a crank angle of 450
 

from inner dead centre position. 

Solution: Given: NBO = 300 r.p.m or ωBO = 
60

300
2 X = 31.42 rad/s;  OB = 150mm = 0.15m, 

BA = 600mm = 0.6m. 

 

 

 



 

Linear velocity of B with respect to O or velocity of B. 

  VBO = VB = ωBO x OB 

   = 31.42 x 0.15 

   = 4.713mls 

       Linear velocity of the mid point of the connecting rod. 

- Draw space diagram, to some suitable scale 

- For velocity diagram 

1. Draw vector ob perpendicular to BO, to some suitable scale, to represent the velocity of 

B with respect to O or simply velocity of represent the velocity of B i.e VBO or VB, such 

that 

Vector ob = VBO = VB = 4.713 mls. 

2. From point b, draw vector ba perpendicular to BA to represent the velocity of A with 

respect to B i.e VAB, and from point 0 draw vector oa parallel to the motion of A (which 

is along AO) to represent the velocity of A i.e. VA. The vectors ba and oa intersect at a. 

By measurement, the velocity of A with respect to B  

VAB = vector ba = 3.4mls 

 And velocity of A, VA = Vector oa = 4m/s 

3. To find the velocity of the midpoint D of the connecting rod AB, divide the vector ba at d 

in the same ratio as D divides AB in the space diagram. 

BA
BD

ba
bd    



4. Join od. Now the vector od represents the velocity of the mid point of the connecting rod 

i.e VD. 

By measurement, 

  VD = vector od = 4.1m/s. 

Acceleration of the midpoint of the connecting rod. 

 We know that the radial component of the acceleration of B with respect to O or the 

acceleration of B, 

  
OB

V
aa Bo
B

r
BC

2

   

  

 

2

2

1.148

15.0

713.4

mls


 

and the radial component of the acceleration of A with respect to B 

5. 
BA

ABV
ar

AB

2

  

=
  2

2

/3.19
6.0

4.3
sm  

Now, the acceleration diagram. 

1. Draw vector o1 b1 parallel to Bo, to some suitable scale, to represent the radial component 

of the acceleration of B with respect to O or simply acceleration of B ie. 

21.148 mlsaora B
r
Bo   

2. The acceleration of A with respect to B has the following two component 

a. The radial component of the acceleration of A with respect to B ie. r
ABa  and 

b. The tangential component of the acceleration of A with respect to B  ie. t
ABa . These two 

component are mutually perpendicular. 



Therefore form point b1, draw vector b1x parallel to AB to represent ar
AB = 19.3m/s and from 

point x draw vector xa1 perpendicular to vector b1 x whose magnitude is yet unknown. 

3. Now from O1, draw vector O1 a1 parallel to the path of motion of A (which is along AO) 

to represent the acceleration of A ie. aA. The vectors xa 
1
 and o1a1 intersect at a1. Join a1b1. 

4. In order to find the acceleration of the midpoint D of the connecting rod AB, divide the 

vector a1b1 at d1 in the some ratio as D divides AB. 

i.e.  BABD
ab

db 11

11
 

     5. Join O1d1. The vector O1d1 represents the acceleration of mid point D of the         

connecting rod. 

 By measurement 

   AD = vector o1d1 = 117m/s2 

b. Angular velocity of the connecting rod AB, 

 ωAB = 267.5
6.0

4.3
rads

BA

V AB  (Anticlockwise about B) 

    c.          Angular acceleration    

By measurement, from the acceleration diagram 

  2103mlsat
AB   

 Angular acceleration of the connecting rod AB, 

 �AB = ).(/.67.171
6.0

103 2 aboutBclockwisesrad
BA

at
AB   

 


